The directly and inversely propotional relationships described in Ohm's Law can be shown by rearranging the equation that links potential difference, current and resistance, $V=I R$.

To make I the subject:

$$
V=I R
$$

To get I on its own, we need to divide by R as I and R are multiplied together. As we divide by R on one side, we must do the same to the other side.

$$
\frac{V}{R}=\frac{I R}{R}
$$

$R \div R=1$ (anything divided by itself is 1), so that cancels out. Swapping the sides around, we get:

$$
I=\frac{V}{R}
$$

Current is the dependent variable, the outcome. The current can only be varied by changing either the potential difference or resistance.

Varying potential difference:
Using the equation above and some very simple numbers, we can demonstrate that current is directly proportional to potential difference. If the potential difference is 1 V and the resistance is 1Ω :

$$
\begin{aligned}
& I=\frac{V}{R} \\
& I=\frac{1}{1} \\
& I=1 A
\end{aligned}
$$

Keeping resistance the same (1 $)$ but doubling potential difference to 2 V , we will see that current doubles:

$$
\begin{gathered}
I=\frac{V}{R} \\
I=\frac{2}{1} \\
I=2 A
\end{gathered}
$$

Varying resistance:
Using the equation above and some very simple numbers, we can demonstrate that current is inversely proportional to resistance. If the potential difference is 1 V and the resistance is 1Ω :

$$
\begin{aligned}
& I=\frac{V}{R} \\
& I=\frac{1}{1} \\
& I=1 A
\end{aligned}
$$

Keeping potential difference the same (1V) but doubling resistance to 2Ω, we will see that current halves:

$$
\begin{gathered}
I=\frac{V}{R} \\
I=\frac{1}{2} \\
I=0.5 A
\end{gathered}
$$

The directly and inversely relationships described in Newton's Second Law can be shown by rearranging this equation that links force, mass and acceleration, $F=m a$.

To make a the subject:

$$
F=m a
$$

To get a on its own, we need to divide by m as m and a are multiplied together. As we divide by m on one side, we must do the same to the other side.

$$
\frac{F}{m}=\frac{m a}{m}
$$

$m \div m=1$ (anything divided by itself is 1), so that cancels out. Swapping the sides around, we get:

$$
a=\frac{F}{m}
$$

Acceleration is the dependent variable, the outcome. The acceleration can only be varied by changing either the resultant force or the mass.

Varying resultant force:
Using the equation above and some very simple numbers, we can demonstrate that acceleration is directly proportional to resultant force. If the resultant force is 1 N and the mass is 1 kg :

$$
\begin{gathered}
a=\frac{F}{m} \\
a=\frac{1}{1} \\
a=1 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Keeping mass the same (1 kg) but doubling resultant force to 2 N , we will see that acceleration doubles:

$$
\begin{gathered}
a=\frac{F}{m} \\
a=\frac{2}{1} \\
a=2 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Varying mass:
Using the equation above and some very simple numbers, we can demonstrate that acceleration is inversely proportional to mass. If the resultant force is 1 N and the resistance is 1 kg :

$$
\begin{gathered}
a=\frac{F}{m} \\
a=\frac{1}{1} \\
a=1 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Keeping resultant force the same (1N) but doubling mass to 2 kg , we will see that acceleration halves:

$$
\begin{gathered}
a=\frac{F}{m} \\
a=\frac{1}{2} \\
a=0.5 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

The directly and inversely relationships described in Hooke's Law can be shown by rearranging this equation that links force, mass and acceleration, $F=k e$.

To make e the subject:

$$
F=k e
$$

To get e on its own, we need to divide by k as k and e are multiplied together. As we divide by k on one side, we must do the same to the other side.

$$
\frac{F}{k}=\frac{k e}{k}
$$

$k \div k=1$ (anything divided by itself is 1), so that cancels out. Swapping the sides around, we get:

$$
e=\frac{F}{k}
$$

Extension is the dependent variable, the outcome. The extension can only be varied by changing either the force applied or the spring constant.

Varying force:
Using the equation above and some very simple numbers, we can demonstrate that extension is directly proportional to force. If the force is 1 N and the spring constant is $1 \mathrm{~N} / \mathrm{m}$:

$$
\begin{gathered}
e=\frac{F}{k} \\
e=\frac{1}{1} \\
e=1 m
\end{gathered}
$$

Keeping spring constant the same ($1 \mathrm{~N} / \mathrm{m}$) but doubling force to 2 N , we will see that extension doubles:

$$
\begin{gathered}
e=\frac{F}{k} \\
e=\frac{2}{1} \\
e=2 m
\end{gathered}
$$

Varying spring constant:
Using the equation above and some very simple numbers, we can demonstrate that extension is inversely proportional to spring constant. If the force is 1 N and the spring constant is $1 \mathrm{~N} / \mathrm{m}$:

$$
\begin{gathered}
e=\frac{F}{k} \\
e=\frac{1}{1} \\
e=1 m
\end{gathered}
$$

Keeping force the same (1N) but doubling spring constant to $2 \mathrm{~N} / \mathrm{m}$, we will see that current halves:

$$
\begin{gathered}
e=\frac{F}{k} \\
e=\frac{1}{2} \\
e=0.5 \mathrm{~m}
\end{gathered}
$$

